
This paper provides information relating to z/OS UNIX functions and how they impact security. It can
be used as a reference point and a checklist to ensure UNIX functions in z/OS 1.2 and above have
security applied. This paper assumes that UNIX is already configured and able to communicate with
RACF.

The RACF Security Administrator’s Guide (RACF and z/OS UNIX chapter) and the UNIX
System Services Planning manual (Establishing UNIX Security chapter) contain information to assist
an administrator setup their UNIX security..

1. SAMPLIB member BPXISEC1
This sample TSO/E CLIST is provided with z/OS and has RACF commands needed for the
security setup. It is recommended that you review this CLIST and use it to setup the security
environment.

2. Define user IDs and group IDs
a. UID
For users IDs to use UNIX the IDs must have a UID parameter defined. This can be
done either on the RACF adduser command or the RACF alteruser command. The UID is a
subparameter of the OMVS parameter.

 Example; au userid omvs(uid(xx)) or alu userid omvs(uid(xx))

This UID should be unique for each user, although user IDs can share a UID it is not
recommended because the sharing of UIDs allows each user access to all of the resources
associated with the other users of the shared user ID. You might want to share a UID if the user
IDs belong to the same person. To determine a unique ID, the ISPF shell can be used to generate
a list of all user and then sort the list by UID. Or the administrator can keep track of assigned
UIDs with their own methods, such as a flat file or data base.

b. HOME
The user ID should also have a home directory assigned which is assigned through the HOME
subparameter. This is where the files created by the user will reside. The recommended home
directory for a user is /u followed by the user ID, for example /u/mary would be the home
directory for the MARY ID.

 If a home directory is partially specified (for example, /mary) problems may occur
 during processing. The home directory must be created by the security administrator
 before the user logs on to the system.

 Example; au user omvs(home(‘/u/mary’) not au user omvs(home(‘/mary’))

 Z/OS UNIX Security

c. PROGRAM
Specify an initial program for each user ID through the PROGRAM subparameter of the
OMVS parameter. This parameter gives control to the user’s program when the user logs in
or invokes the OMVS command.

 Example: au user omvs(‘program(‘/bin/sh’)

To list a user’ss ID to view their UNIX information; lu mary omvs noracf

d. Field-Level Access
To allow a user to see or change OMVS fields in a RACF user profile, field-level access must
be setup and users authorized to specified fields in any profile or to specified fields in the user’s
own profile (see UNIX System Services Planning for all fields that can be defined) .

Example : setr classacct(field) raclist(field) - activate class and setup for refresh ability
 rdef field user.omvs.uid uacc(none) - define user fields to FIELD class
 rdef field user.omvs.home uacc(none)
 rdef field user.omvs.program uacc(none)

 pe user.omvs.uid cl(field) id(&RACUID) ac(read)
 pe user.omvs.home cl(field) id(&RACUID) ac(update)
 pe user.omvs.program cl(field) id(mary) ac(update)

 &RACUID gives all users the ability to look at the specified field in their
 profiles. An access of update would allow them to change this field. So
 do not give update authority to the user.omvs.uid field because users
 could then give themselves superuser authority (UID 0).

 Specifying a specific user ID gives that person the ability to see the
 program fields for all users and update authority would allow them to
 change the field.

e. Groups (GID) .
Connect the user to a RACF defined group that has a OMVS GID, if not connected to one
the user will not be able to access UNIX resources. If the group specified is not the users
RACF default group you may make a RACF change so the group selected becomes the user’s
default group. Or the user can simply remember to specify this group when they logon and
intend to perform UNIX functions. The GID is used in z/OS UNIX security checks. You can
assign the same GID to multiple RACF groups, but it is not recommended since you would
loose control at an individual group level. RACF groups that have the same GID assignment
are treated as a single group during security checks.

 Z/OS UNIX Security

Example; au mary dfltgrp(admin) name(‘mary doe’) password(xxxxxx)
 omvs(uid(97) home(‘u/mary’) program(‘/bin/sh’))
 tso(acctnum(xxxxxxx) proc(proc1) sysoutclass(a))

 admin group must already have a GID assigned.

 To list the group to check the GID; lg admin omvs noracf

For special considerations about using the RACF list-of-groups checking (GRPLIST) option
for access to hierarchical file system (HFS) files and directories, see z/OS Security Server
RACF Security Administrator’s Guide .

3. Superusers
The number of humans (as opposed to started tasks) that have superuser authority (UID 0)
should be limited to the minimum needed to perform the work and take care of the system.

There are three ways of assigning superuser authority;
a. Using the UNIXPRIV class profiles - allows a user to have some privileged functions
b. Using BPX.SUPERUSER - allows a user to request that they be given superuser
c. Assigning a UID of 0 to a user ID

Assigning a user ID a UID of 0 gives them superuser authority all the time and allows that ID to
bypass all security checks in UNIX which allows the ID access to all files in the system, install
products, manage processes and perform other administrative activities. Therefore it is strongly
recommend that there be very few humans who have this authority. See UNIXPRIV and
BPX.SUPERUSER sections for more information.

Sometimes it may be appropriate to assign a UID of 0 for a specific user ID. If this must be done
it is recommended that the person have two user IDs. One ID associated with a UID of 0 that
will be used when performing system maintenance, etc. And one user ID that has a UID other then
zero which the user will use when performing all other regular activities.

4. UNIXPRIV
You can define profiles in the UNIXPRIV class to grant RACF authorization for certain z/OS
UNIX privileges. By using this RACF class, you can specifically grant certain superuser privileges
to users who do not have superuser authority.

Resource name in the UNIXPRIV class are associated with z/OS UNIX privileges. You
 define profiles in the UNIXPRIV class protecting those resources in order to use RACF
 authorization to grant access to those privileges. The UNIXPRIV class must be active and
 the SETROPTS RACLIST must be in effect for the UNIXPRIV class.

 Z/OS UNIX Security

 The list of resource names available in the UNIXPRIV class, the UNIX privilege associated
 with this resource and the authority required to grant the privilege are all listed in the UNIX
 System Services Planning manual (see Establishing UNIX Security chapter).

 For example if a user needs to be able to mount and unmount file systems the administrator
 can define SUPERUSER.FILESYS.MOUNT to the UNIXPRIV class and grant the user ID
 READ authority. The user can now perform this task but it does not have access to all
 the other superuser authority.

 Example: setr classact (unixpriv) - activate the class in RACF
 setr raclist(unixpriv) - set RACLIST processing
 rdef unixpriv superuser.filesys.mount uacc(none) - define entry
 pe superuser.filesys.mount cl(unixpriv) id(userids or groups) ac(read)
 setr raclist(unixpriv) refresh

5. BPX.SUPERUSER
To use this method for controlling superuser authority you must define BPX.SUPERUSER to the
RACF class FACILITY and them permit the users that need to have superuser authority. When
users need to use the superuser authority they can switch to superuser mode using the su
command or the “Enable superuser mode (SU) option in the ISPF shell.

Example: setr classact(facility) - activate the class in RACF
 setr raclist(facility) - set RACLIST processing
 pe bpx.superuser cl(facility) id(xxxx) ac(read) - grant ID access or
 pe bpx.superuser cl(facility) id(group) ac(read) - permit a group access
 setr raclist(facility) refresh

 pe bpx.superuser cl(facility) id(mary) delete - remove user ID when superuser
 authority is no longer needed

Each user you define to this resource should have a unique UID associated with their RACF ID.
The same applies to each person connect to any group that you might grant superuser authority
(such as a system programmers group). See “Defining user IDs and group IDs” for more
information on this subject. For further details see the UNIX System Services Planning manual,
chapter on Establishing UNIX Security.

6. Protected User IDs
User IDs can be defined as protected user IDs by specifying NOPASSWORD on the ID. These
Ids are used for started procedures associated with z/OS UNIX, such as the kernel, the
initializations started procedure, etc..

 Z/OS UNIX Security

 NOPASSWORD creates a protected user ID that can not be used to log on to the system nor
 can it be revoked by incorrect password attempts. Using NOPASSWORD also prevents the
 ID from being used with TSO which prevents a user logon from interfering with the OMVS user
 ID.

7. Setting UNIX user limits
You can set certain UNIX user limits and control the amount of resources these users consume.
The resource limits for the majority of UNIX users are specified in the BPXPRMxx parmlib
member. These limits apply to all users except those with a UID of 0. Sometimes there are
certain users that need to exceed the limitations imposed by BPXPRMxx. Rather then give out
superuser authority so they can bypass the limitation you can individually set higher limits for these
users. The limits are stored in the OMVS segment of the user profile. Example of limits overrides
would be for maximum CPU time, or address space size. The UNIX System Services Planning
manual list all the limits you can override.

8. Protecting file system resources
HFS files and directories can be protected by permission bits that are stored within the file system.
These bits allow read, write or search authority for a directory and read, write or execute for a
file. There are three sets of bits; owner, owning group, and everyone else, so separate authorities
can be specified for each group. The UNIX command chmod can be used to change individual
bits without affecting the other bits. The owner, superuser can change these settings, or authority
could be granted through UNIXPRIV. For information on setting these bits and granting/changing
this authority reference the UNIX System Services Planning manual.

There also exist access control lists (ACLs) that are use in conjunction with the permission bits.
ACLs allow access control for files and directories by individual UIDs and GIDs. The checking
for ACLs is done by RACF but they are administered through UNIX commands.
ACLs are created, modified and deleted using the setfacl UNIX command and they are
displayed using the getfacl shell command. ACLs are created and checked by RACF, if you are
using a security products other then RACF you need to check that documentation to see if it
supports ACLs.

There are two types of ACLs; base ACL are the same as permission bits and they can be
changed using chmod or setfacl; extended ACL are entries for individual users or group and they
are managed via setfacl. The file owner, superuser or someone authorized through UNIXPRIV
can change these ACLs.

To use ACLs the RACF class FSSEC must be active. If this class is not active the standard
permission bits are used to govern access to the file/directory.

 Z/OS UNIX Security

Example1; file /etc/inetd.conf, user ID Joe and group admins require read and write authority

 setr classact(FSSEC) raclist(FSSEC)
 setfacl -m user:joe:rw-,group:admits:rw- /etc/inetd.conf
 (-m modifies or adds ACLs if they do not exist)

 getfacl /etc/inetd.conf - display file
 #file: /etc/inetd.conf
 #owner: BPXROOT
 #group: SYS1
 user::rw-
 group::r--
 other::r--
 user:JOE:rw-
 Group:ADMINS:rw-

 Example 2; file /etc/inetd.conf, User ID Joe and group Admins require read and write
 authority and set base permission bits to prevent access by anyone other than
 the owner

 setfacl -s user::rw-,group::---,other::---,
 user:joe:rw-,group:admits:rw- /etc/inetd.conf
 (-s replaces the contents of an ACL with the entries specified on the
 command line. It requires that base permissions be specified.)

 Reference the UNIX Planning manual and the UNIX Command manual for additional
 details on ACL and how to use the command.

9. Auditing
Audit classes DIRSRCH, DIRACC, FSOBJ, FSSEC, PROCESS, PROACT are set via RACF
LOGOPTIONS. No users or groups are defined to these classes. Activating them via
CLASSACT has no effect. These classes control audit in z/OS UNIX.

10. Special UNIX Privileges without being a SuperUser
 Grant certain superuser privileges with a high degree of granularity to users who do not
 have superuser authority. UNIXPRIV profiles identified and described in USS System
 Planning. Access required to perform function is shown in parentheses. Where no access is
 shown the access is READ.

 a. CHOWN.UNRESTRICTED
 Allows all users to use the chown command to transfer ownership of their own files.

 (NONE)

 Z/OS UNIX Security

 b. RESTRICTED.FILESYS.ACCESS
 Specifies that RESTRICTED users cannot gain file access by virtue of the 'other '

 permission bits. Can be overridden for a specific user/group. (NONE)
 c. SUPERUSER.FILESYS.ACLOVERRIDE
 Specifies that ACL contents override the access that was granted by

 SUPERUSER.FILESYS. (NONE) Can be overridden for a specific user/group.
 (User/group must have the same access that would be required to
 SUPERUSER.FILESYS while accessing the file)

 d. SUPERUSER.FILESYS
 Allows user to read any local file, and to read or search any local directory. (READ)
 Allows user to write to any local file, and includes privileges of READ access.
 (WRITE)
 Allows user to write to any local directory, and includes privileges of UPDATE access.
 (CONTROL or higher)
 e. SUPERUSER.FILESYS.CHANGEPERMS

 Allows users to use the chmod command to change the permission bits of any file and
 to use the setfacl command to manage access control lists for any file. (READ)

 f. SUPERUSER.FILESYS.CHOWN
 Allows user to use the chown command to change ownership of any file. (READ)
 g. SUPERUSER.FILESYS.PFSCTL
 Allows user to use the pfsctl() callable service. (READ)
 h. SUPERUSER.FILESYS.VREGISTER
 Allows a server to use the vreg() callable service to register as a VFS file server.

 (READ)
 i. SUPERUSER.IPC.RMID
 Allows user to issue the ipcrm command to release IPC resources. (READ)
 j. SUPERUSER.PROCESS.GETPSENT
 Allows user to use the w_getpsent() callable service to receive data for any process.

 (READ)
 k. SUPERUSER.PROCESS.KILL

 Allows user to use the kill() callable service to send signals to any process. (READ)
 l. SUPERUSER.SETPRIORITY
 Allows user to increase own priority. (READ)
 m. SUPERUSER.SETPRIORITY
 Allows user to increase own priority. (READ)

 Z/OS UNIX Security

11. BPX.* FACILITY class profiles
 Reference the UNIX System Services Planning manual and the Security Server RACF
 Security Administrator’s Guide for additional details on BPX profiles.

a. BPX.DAEMON
In z/OS it is recommended that the administrator define BPX.DAEMON to the RACF class
FACILITY. Doing this means that the system has z/OS UNIX security and you have more
control over superusers then systems that do not run with this definition.

This serves two functions; any superuser permitted to this profile has the daemon authority to
change MVS identities without knowing the target user ID’s password (target ID must have an
OMVS segment defined).

If BPX.DAEMON is not defined then all superusers have deamon authority. To limit which
superusers have daemon authority, define this profile and permit only selected superusers to it.

The second function BPX.DAEMON provides ensures that any program loaded into an
address space that requires deamon level authority must be defined to program control.
z/OS UNIX has the following deamons; inetd (network daemon), rlogind (remote login),
cron(clock daemon), uucpd (UUCP daemon). SYSLOG daemon is shipped with
Communications Services and is documented in their library.

You must activate program control in RACF and files that require program control must have
the program control flag set. (UNIX Planning and RACF manuals explain how to perform
these tasks).

 Example: setr classact(facility) raclist(facility) - make sure FACILITY class is active
 rdef facility bpx.daemon uacc(none)
 pe bpx.daemon cl(facility) id(racfadm) ac(read) - administrator needs access
 to restart daemons
 pe bpx.daemon cl(facility) id(omvskern) ac(read) - UNIX kernel needs access

b. BPX.DAEMON.HFSCTL
 Controls which users with daemon authority are allowed to load uncontrolled
 programs from MVS libraries into their address space.

c. BPX.DEBUG
Controls users who can use ptrace (via dbx) to debug programs that run with APF authority or
with BPX.SERVER authority.

 Z/OS UNIX Security

d. BPX.DEFAULT.USER
Identifies the user ID and group name to be used when setting up default OMVS segments.

e. BPX.FILEATTR.APF
Controls which users are allowed to set the program control attribute in an HFS files .
Programs marked with this attribute can execute in server address spaces that run with a high
level of authority.

f. BPX.FILEATTR.PROGCTL
Controls which users are allowed to set the program control attribute in an HFS file. Programs
marked with this attribute can execute in server address spaces that run with a high level of
authority.

g. BPX.FILEATTR.SHARELIB
Indicates that extra privilege is required when setting the shared library extended attribute via
the chattr() callable service. This prevents the shared library region from being misused.

h. BPX.JOBNAME
Control which users are allowed to set their own job names by using the BPX_JOBNAME
environment variable or the inheritance structure on spawn. Users with READ or higher
permissions to his profile can define their own job names

i. BPX.SAFFASTPATH
Enables faster security checks for file system so it improves performance but prevents auditing
of successful events.

j. BPX.SMF
Checks if the caller attempting to cut an SMF record is allowed to write an SMF record.

k. BPX.SERVER
Restricts the use of the pthread_security_np service. Users requiring this service must be
defined to BPX.SERVER with read or write authority. It deletes or creates the security
environment of the caller’s thread. It also restricts the use of the BPX1ACK service, which
determines access authority to z/OS resources

l. BPX.SRV.userid
Allows users to change their UID if they have access to BPX.SRV.userid, where uuuuuuuu is
the MVS user ID associated with the target UID. BPX.SRV.userid is a RACF SURROGAT
FACILITY class profile.

 Z/OS UNIX Security

m. BPX.STOR.SWAP
Controls which users can mark address spaces nonswappable.

n. BPX.SUPERUSER
Allows users to switch to superuser authority. See SUPERUSER, item 3 and 5 above.

o. BPX.WLMSERVER
Controls access to the WLM server functions.

 Z/OS UNIX Security

